贝叶斯计算统计
发布者:赵伟翔
发布时间:2025-03-28
浏览次数:11
贝叶斯计算统计(48课时/3学分)
Computational Bayesian Statistics (48 hours/3 credits)
课程描述:
本课程旨在培养学生掌握贝叶斯推断的理论知识与实践技能,使其能够广泛应用于实际场景。课程首先介绍贝叶斯框架的基本原理,随后重点解析基于马尔可夫链蒙特卡洛(MCMC)的核心推断算法,并结合实际案例探讨多种经典模型。具体内容包括:贝叶斯统计学导论;模型检验、比较与选择;贝叶斯计算入门;吉布斯采样;Metropolis-Hastings算法;缺失数据技术;分层模型与回归模型;高斯过程模型。
The aim of this course is to equip students with the theoretical knowledge and practical skills to perform Bayesian inference in a wide range of practical applications. Following an introduction to the Bayesian framework, the course will focus on the main Markov chain Monte Carlo algorithms for performing inference and will consider a number of models widely used in practice. Topics covered are: Introduction to Bayesian statistics; model checking, comparison and choice; introduction to Bayesian computation; Gibbs sampler; Metropolis-Hastings algorithm; missing data techniques; hierarchical models; regression models; Gaussian process models.